Objectives

- Identify Common Network Devices
- Define Protocols
- Fundamentals of DNS
- Network Configuration Tools
Common Network Devices

- **Network Interface Card (NIC)**
 - Allows computer to talk to a network

- **Hub**
 - Allows multiple network devices to connect. A signal comes in one port and is transmitted to all other ports.

- **Switch**
 - Allows multiple network devices to connect, but does not distribute signals without verifying whether it really needs to propagate to a given port or ports.
Common Network Devices

- **Wireless Access Point (WAP)**
 - Allows users to connect to a network without ‘wires’
 - RF signals are used to communicate instead of physical wires
 - Wireless access standards are broadly divided into 802.11a, 802.11b, and 802.11g

- **Router**
 - Forwards data packets between networks; used to connect different networks and transfer packets between them

- **Gateway**
 - Used to connect two different types of networks

- **Modem**
 - Translates digital signals from a computer into analog signals
Protocols

- Protocols
 - A set of rules that governs the communications between computers on a network
 - Not hardware (cable, routers, etc.); rather what makes all the hardware function together and allows it communicate

- Internet Protocol (IP)
 - A set of related network protocols (TCP, UDP, HTTP, FTP, ARP, ICMP) used to move data around the Internet and other networks

- Protocols allow the following to occur
 - Streaming video or music online (UDP)
 - Changes www.google.com to 74.125.45.99 (DNS)
 - Safely perform transactions online (SSL)
 - Chat online (IRC)
Protocols

- **TCP/IP** – Transmission Control Protocol/Internet Protocol
 - Most commonly used protocol for Internet communication

- **IP Addressing**
 - The IP address uniquely identifies computers on a TCP/IP network
 - Every “node” (client, server, router) on a network has to have a unique IP address (192.168.1.15 for example)

- **UDP - User Datagram Protocol**
 - A connectionless service
 - Main alternative to TCP

- **DNS - Domain Name System**
 - Translates network address (such as IP addresses) into terms understood by humans (such as Domain Names) and vice-versa
Protocols

- **DHCP** - Dynamic Host Configuration Protocol
 - Can automatically assign Internet addresses to computers and users
- **FTP** - File Transfer Protocol
 - A protocol that is used to transfer and manipulate files over the network
- **HTTP** - HyperText Transfer Protocol
 - An Internet-based protocol for sending and receiving web pages
- **HTTPS** - HyperText Transfer Protocol Secure
 - An Internet-based protocol for sending and receiving WebPages securely
- **IMAP** - Internet Message Access Protocol
 - A protocol for e-mail messages on the Internet
Protocols

- **IRC - Internet Relay Chat**
 - A protocol used for Internet chat and other communications

- **POP3 - Post Office protocol Version 3**
 - A protocol used by e-mail clients to retrieve messages from remote servers

- **SMTP - Simple Mail Transfer Protocol**
 - A protocol for e-mail messages on the Internet

- **ARP – Address Resolution Protocol**
 - Converts an IP address to its corresponding physical network address
Protocols

- **SNMP - Simple Network Management Protocol**
 - A standard TCP/IP protocol used to monitor and map network availability, performance, and error rates

- **Telnet**
 - A remote terminal access protocol

- **SSH – Secure Shell**
 - A secure remote terminal access protocol

- **SSL - Secure Sockets Layer**
 - A security protocol to enable Web sites to pass sensitive information securely in an encrypted format

- **LDAP - Lightweight Directory Access Protocol**
 - A network protocol and a standard architecture for organizing the directory data
TCP

- Most communications are handled using TCP
- TCP is reliable
 - Acknowledgements indicate delivery of data
 - Checksums are used to detect corrupted data
 - Sequence numbers detect missing, or mis-sequenced data
 - Corrupted data is retransmitted after a timeout
 - Mis-sequenced data is re-sequenced
 - Flow control prevents over-run of receiver
 - Uses congestion control to share network capacity among users
 - TCP is connection-oriented
- Commonly used for
 - World Wide Web
 - E-mail
 - File transfer
UDP

- UDP is not reliable
 - Not guaranteed that packets will be received
 - No acknowledgements to indicate delivery of data
 - Data may arrive out of sequence
 - Data may be duplicate or go missing
 - Congestion of data is common
 - Checksums are used to detect tampering or corruption

- Commonly used for
 - Streaming music or video
 - Voice over IP (VoIP)
 - Gaming
 - DNS
Network data transmissions often produce errors, such as toggled, missing or duplicated bits
- The data received might not be identical to the data transmitted

Checksums are used
- Ensures the integrity of data portions for data transmission or storage

Hash functions
- A hash value is generated for each given message
- Used for data comparison and detecting duplicated data
- Commonly used to check data integrity
File Integrity

- **Md5**
 - A command line utility usable on either Unix or MS-DOS/Windows which generates and verifies message digests using the MD5 algorithm
 - Security has been compromised as an encryption protocol, however, used mostly to provide some assurance that a transferred file has arrived intact and uncorrupted
 - How to use md5
 - http://www.openoffice.org/dev_docs/using_md5sums.html
Ports

- **Port**
 - A virtual connection point that allows software applications to share hardware resources without interfering with each other
 - Computers and routers automatically manage network traffic traveling via their virtual ports
 - Used in protocols to name the ends of logical connections which carry long term conversations

- **Well known (privileged) ports**
 - 1-1023

- **Registered ports**
 - 1024-49151

- **Dynamic or private ports**
 - 49152-65535
A service contact port is defined for providing services to unknown callers.

These are common ports that are easily targeted:

- TCP port 21 - FTP (File Transfer Protocol)
- TCP port 23 - Telnet
- TCP port 25 - SMTP (Simple Mail Transfer Protocol)
- TCP and UDP port 53 - DNS (Domain Name System)
- TCP ports 80 and 443 - HTTP (Hypertext Transport Protocol) and HTTPS (HTTP over SSL)
- TCP port 110 - POP3 (Post Office Protocol version 3)
- TCP and UDP port 135 - Windows RPC
- TCP and UDP ports 137–139 - Windows NetBIOS over TCP/IP

On a Unix/Linux system, ports and associated service names are listed in the /etc/services file.

For a complete list of ports and services, see http://packetlife.net/media/library/23/common-ports.pdf
DNS

- Domain Name System (DNS)
 - Associates information with domain names
 - It translates human-readable computer hostnames (e.g., `ww.wikipedia.org`) into the IP address
 - Requests and responses are normally sent as UDP packets (to port 53)
- DNS is a distributed database: parts of the tree (called "zones") are held in different servers
 - DNS servers do not contain the entire database, but rather a subset
- Each zone has two or more authoritative nameservers
 - These authoritative DNS servers publish information about that domain and the nameservers of any domains "beneath" it
 (See next slide for illustration)
- Every caching nameserver is seeded with a list of root servers
- Currently there are only 13 root servers

http://en.wikipedia.org/wiki/DNS
DNS is structured as a hierarchy similar to the IP routing hierarchy. The computer requesting a name resolution will be re-directed 'up' the hierarchy until a DNS server is found that can resolve the domain name in the request.
Tools

- **Nslookup**
 - Tool used to query DNS for a domain name or IP address
 - At a command line, type ‘nslookup <hostname>’ and hit enter.

```
C:\Users\mel>nslookup utsa.edu
Server: clinton1604.utsarr.net
Address: 129.115.102.165

Non-authoritative answer:
Name: utsa.edu
Address: 129.115.102.107
```
Whois

- Command returns information about a domain name or IP address such as domain name, registrant, contacts, nameservers, and domain name dates (i.e., activation, expiration)
- To perform a Whois search online go to http://www.internic.net/whois.html

Domain Name: UTSA.EDU

Registrant:
University of Texas at San Antonio
6900 North Loop 1604 West
San Antonio, TX 78249
UNITED STATES

Name Servers:
- JULIET.IT.UTSA.EDU 129.115.102.150
- BERRY.IT.UTSA.EDU 129.115.102.151

Domain record activated: 14-Dec-1990
Domain record last updated: 29-Jun-2011
Domain expires: 31-Jul-2012
Tools

- **Traceroute**
 - Command that shows the path a network packet takes from origination to destination
 - The command displays how many ‘hops’ from router to router it takes for the packet to reach its destination
 - Also displayed are the addresses of each router and the time it takes for a packet to go from router to router
 - If a router is not reachable, you will see a request timeout
 - In UNIX machines the command is ‘traceroute’, in MS Windows machines it is called ‘tracert’.
 - This command is not always effective as many sites block ICMP to minimize DDoS issues
 - The next slide shows an example of running the command
Tools

- **Traceroute**
- See results for ‘tracert www.yahoo.com’

```
C:\Users\mel>tracert www.yahoo.com

Tracing route to any-fp3-real.wal.b.yahoo.com [209.191.122.70] over a maximum of 30 hops:

1   1 ms  1 ms  1 ms  rrcs-24-173-46-81.sw.biz.rr.com [24.173.46.81]
2   2 ms  2 ms  2 ms  rrcs-24-73-242-153.sw.biz.rr.com [24.73.242.153]
3   6 ms  *    6 ms  24.73.242.30
4   *    6 ms  6 ms  gig3-0-0.snantx5000-m-rtr01.texas.rr.com [24.93.60.144]
5   7 ms  6 ms  7 ms  gig2-0-1.hstntxl3-pe-rtr01.texas.rr.com [24.93.35.22]
6   7 ms  6 ms  7 ms  gig3-0-1.hstntxl3-p-rtr01.texas.rr.com [24.93.35.20]
7  14 ms 12 ms 10 ms  gig4-2-0.hstntxl3-rtr1.texas.rr.com [24.93.60.66]
8   6 ms  12 ms  6 ms  ae-4-0.cr0.hou30.tbone.rr.com [66.109.6.54]
9  11 ms  11 ms  10 ms  107.14.17.141
10  13 ms  10 ms  10 ms  66.109.9.191
11  11 ms  12 ms  11 ms  ae-1-d111.msr2.mud.yahoo.com [216.115.104.103]
12  11 ms  11 ms  11 ms  te-8-1.fab2-a-gdc.mud.yahoo.com [209.191.78.141]
13  28 ms  11 ms  12 ms  te-8-2.bas-c1.mud.yahoo.com [209.191.78.173]
14  11 ms  11 ms  11 ms  ir1.fp.vip.mud.yahoo.com [209.191.122.70]

Trace complete.
```
Tools

- **Netstat**
 - A tool for checking network configuration and activity such as
 - All connections including what protocol and its current state
 - Display contents of the IP Routing table
 - Network interface statistics
 - Displays different information by using different parameters or ‘flags’ with the command (e.g., ‘netstat –a’)

 Note: Windows and Unix have different ‘flags’ and options available

- **For Windows XP**

- **For Linux**
Tools

- **Netstat**
 - Display all connections and current state using ‘netstat –a’
 - *(Windows XP)*

```plaintext
C:\Users\mel> netstat -a

Active Connections

<table>
<thead>
<tr>
<th>Proto</th>
<th>Local Address</th>
<th>Foreign Address</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>0.0.0.0:135</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>0.0.0.0:445</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>0.0.0.0:912</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>0.0.0.0:17972</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>0.0.0.0:49152</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>0.0.0.0:49153</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>0.0.0.0:49154</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>0.0.0.0:49157</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>0.0.0.0:49158</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>0.0.0.0:57621</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>127.0.0.1:4370</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>127.0.0.1:4380</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>127.0.0.1:5354</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>127.0.0.1:5354</td>
<td>TRN44:49155</td>
<td>ESTABLISHED</td>
</tr>
<tr>
<td>TCP</td>
<td>127.0.0.1:27015</td>
<td>TRN44:0</td>
<td>LISTENING</td>
</tr>
<tr>
<td>TCP</td>
<td>127.0.0.1:27015</td>
<td>TRN44:49164</td>
<td>ESTABLISHED</td>
</tr>
</tbody>
</table>
```

Image credit: CyberPatriot
Tools

- **Netstat**
 - Display contents of the IP Routing table using `netstat -r`
 - (Linux)

```
# netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window Irtt Iface
192.168.1.0  *  255.255.255.0 U  0 0 0 eth2
link-local  *  255.255.0.0 U  0 0 0 eth2
default  192.168.1.1  0.0.0.0 UG 0 0 0 eth2
```

http://www.thegeekstuff.com/2010/03/netstat-command-examples/
Tools

- **Netstat**
 - Display interface statistics using ‘netstat –i)
 - Linux only

```bash
# netstat -i
Kernel Interface table

<table>
<thead>
<tr>
<th>Iface</th>
<th>MTU</th>
<th>Met</th>
<th>RX-OK</th>
<th>RX-ERR</th>
<th>RX-DRP</th>
<th>RX-OVR</th>
<th>TX-OK</th>
<th>TX-ERR</th>
<th>TX-DRP</th>
<th>TX-OVR</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth0</td>
<td>1500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>BMU</td>
</tr>
<tr>
<td>eth2</td>
<td>1500</td>
<td>0</td>
<td>26196</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26883</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>BMRU</td>
</tr>
<tr>
<td>lo</td>
<td>16436</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>LRU</td>
</tr>
</tbody>
</table>
```

- The RX and TX columns show how many packets have been received or transmitted error-free (RX-OK/TX-OK) or damaged (RX-ERR/TX-ERR); how many were dropped (RX-DRP/TX-DRP); and how many were lost because of an overrun (RX-OVR/TX-OVR)
- The last column shows the flags that have been set for this interface

Snort

- An open source network intrusion prevention and detection system (IDS/IPS)
- Can be configured in three main modes
 - Sniffer
 - Will read and display network packets
 - Packet logger
 - Records packets to disk
 - Network intrusion detection
 - Monitor and analyze network traffic according to a previously defined ruleset
 - Perform defined action based on what it found
Tools

- Wireshark
 - A network packet analyzer that captures packets and displays that packet data for easier examination
 - Can be used to
 - Troubleshoot network problems
 - Examine security problems
 - Debug protocol implementations
 - Import and export packet data
 - Filter packets based on criteria
 - Makes it easy to differentiate protocols, traffic, etc. by color coding on screen
 - Download at http://www.wireshark.org/download.html
 - User guides and presentations at http://www.wireshark.org/docs/
Tools

- Screenshot of packets being captured using Wireshark

 For more details, see http://www.wireshark.org/docs/wsug_html_chunked/ChUseMainWindowSection.html
Summary

- Identified common network devices
- Defined protocols
- Discussed the fundamentals of DNS
- Introduced some free network configuration tools
List of References

- http://www.comptechdoc.org/independent/networking/cert/netterms.html
- http://www.thegeekstuff.com/2010/03/netstat-command-examples
- http://www.wireshark.org/download.html
- http://www.wireshark.org/docs/
- http://www.snort.org/snort-downloads
- http://www.openoffice.org/dev_docs/using_md5sums.html