CHAPTER 5

Understanding and Comparing Distributions

The Hopkins Memorial Forest is a 2500-acre reserve in Massachusetts, New York, and Vermont managed by the Williams College Center for Environmental Studies (CES). As part of their mission, CES monitors forest resources and conditions over the long term. They post daily measurements at their Web site.¹ You can go there, download, and analyze data for any range of days. We’ll focus for now on 1989. As we’ll see, some interesting things happened that year.

One of the variables measured in the forest is wind speed. Three remote anemometers generate far too much data to report, so, as summaries, you’ll find the minimum, maximum, and average wind speed (in mph) for each day.

Wind is caused as air flows from areas of high pressure to areas of low pressure. Centers of low pressure often accompany storms, so both high winds and low pressure are associated with some of the fiercest storms. Wind speeds can vary greatly during a day and from day to day, but if we step back a bit farther, we can see patterns. By modeling these patterns, we can understand things about Average Wind Speed that we may not have known.

In Chapter 3 we looked at the association between two categorical variables using contingency tables and displays. Here we’ll explore different ways of examining the relationship between two variables when one is quantitative, and the other is categorical and indicates groups to compare. We are given wind speed averages for each day of 1989. But we can collect the days together into different size groups and compare the wind speeds among them. If we consider Time as a categorical variable in this way, we’ll gain enormous flexibility for our analysis and for our understanding. We’ll discover new insights as we change the granularity of the grouping variable—from viewing the whole year’s data at one glance, to comparing seasons, to looking for patterns across months, and, finally, to looking at the data day by day.

¹www.williams.edu/CES/hopkins.htm
Let’s start with the “big picture.” Here’s a histogram and 5-number summary of the Average Wind Speed for every day in 1989. Because of the skewness, we’ll report the median and IQR. We can see that the distribution of Average Wind Speed is unimodal and skewed to the right. Median daily wind speed is about 1.90 mph, and on half of the days, the average wind speed is between 1.15 and 2.93 mph. We also see a rather windy 8.67-mph day. Was that unusually windy or just the windiest day of the year? To answer that, we’ll need to work with the summaries a bit more.

![Figure 5.1](image)

Figure 5.1 A histogram of daily Average Wind Speed for 1989. It is unimodal and skewed to the right, with a possible high outlier.

Boxplots and 5-Number Summaries

Once we have a 5-number summary of a (quantitative) variable, we can display that information in a **boxplot**. To make a boxplot of the average wind speeds, follow these steps:

1. **Draw a single vertical axis spanning the extent of the data.** Draw short horizontal lines at the lower and upper quartiles and at the median. Then connect them with vertical lines to form a box. The box can have any width that looks OK.
2. **To help us construct the boxplot, we erect “fences” around the main part of the data.** We place the upper fence 1.5 IQRs above the upper quartile and the lower fence 1.5 IQRs below the lower quartile. For the wind speed data, we compute
 \[
 \text{Upper fence} = Q_3 + 1.5 \times \text{IQR} = 2.93 + 1.5 \times 1.78 = 5.60 \text{ mph}
 \]
 and
 \[
 \text{Lower fence} = Q_1 - 1.5 \times \text{IQR} = 1.15 - 1.5 \times 1.78 = -1.52 \text{ mph}
 \]
 The fences are just for construction and are not part of the display. We show them here with dotted lines for illustration. You should never include them in your boxplot.
3. **We use the fences to grow “whiskers.”** Draw lines from the ends of the box up and down to the most extreme data values found within the fences. If a data value falls outside one of the fences, we do not connect it with a whisker.
4. **Finally, we add the outliers by displaying any data values beyond the fences with special symbols.** (We often use a different symbol for “far outliers”—data values farther than 3 IQRs from the quartiles.)

What does a boxplot show? The center of a boxplot is (remarkably enough) a box that shows the middle half of the data, between the quartiles. The height of the box is equal to the IQR. If the median is roughly centered between the quartiles, then the middle half of the data is roughly symmetric. If the median is not centered, the distribution is skewed. The whiskers show skewness as well if they are not roughly the same length. Any outliers are displayed individually, both to keep them out of the way for judging skewness and to encourage you to give them special attention. They may be mistakes, or they may be the most interesting cases in your data.

2 The axis could also run horizontally.
3 Some computer programs draw wider boxes for larger data sets. That can be useful when comparing groups.
For the Hopkins Forest data, the central box contains each day whose Average Wind Speed is between 1.15 and 2.93 miles per hour (see Figure 5.2). From the shape of the box, it looks like the central part of the distribution of wind speeds is roughly symmetric, but the longer upper whisker indicates that the distribution stretches out at the upper end. We also see a few very windy days. Boxplots are particularly good at pointing out outliers. These extraordinarily windy days may deserve more attention. We’ll give them that extra attention shortly.

The prominent statistician John W. Tukey, the originator of the boxplot, was asked by one of the authors why the outlier nomination rule cut at 1.5 IQRs beyond each quartile. He answered that the reason was that 1 IQR would be too small and 2 IQRs would be too large. That works for us.

Comparing Groups with Histograms

It is almost always more interesting to compare groups. Is it windier in the winter or the summer? Are any months particularly windy? Are weekends a special problem? Let’s split the year into two groups: April through September (Spring/Summer) and October through March (Fall/Winter). To compare the groups, we create two histograms, being careful to use the same scale. Here are displays of the average daily wind speed for Spring/Summer (on the left) and Fall/Winter (on the right):

The shapes, centers, and spreads of these two distributions are strikingly different. During spring and summer (histogram on the left), the distribution is skewed to the right. A typical day during these warmer months has an average wind speed of only 1 to 2 mph, and few have average speeds above 3 mph. In the colder months (histogram on the right), however, the shape is less strongly skewed and more spread out. The typical wind speed is higher, and days with average wind speeds above 3 mph are not unusual. There are several noticeable high values.

Summaries for Average Wind Speed by Season

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>StdDev</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall/Winter</td>
<td>2.71</td>
<td>1.36</td>
<td>2.47</td>
<td>1.87</td>
</tr>
<tr>
<td>Spring/Summer</td>
<td>1.56</td>
<td>1.01</td>
<td>1.34</td>
<td>1.32</td>
</tr>
</tbody>
</table>
Comparing Groups with Boxplots

Are some months windier than others? Even residents may not have a good idea of which parts of the year are the most windy. (Do you know for your hometown?) We’re not interested just in the centers, but also in the spreads. Are wind speeds equally variable from month to month, or do some months show more variation?

Earlier, we compared histograms of the wind speeds for two halves of the year. To look for seasonal trends, though, we’ll group the daily observations by month. Histograms or stem-and-leaf displays are a fine way to look at one distribution or two. But it would be hard to see patterns by comparing 12 histograms. Boxplots offer an ideal balance of information and simplicity, hiding the details while displaying the overall summary information. So we often plot them side by side for groups or categories we wish to compare.

By placing boxplots side by side, we can easily see which groups have higher medians, which have the greater IQRs, where the central 50% of the data is located in each group, and which have the greater overall range. And, when the boxes are in an order, we can get a general idea of patterns in both the centers and the spreads. Equally important, we can see past any outliers in making these comparisons because they’ve been displayed separately.

Here are boxplots of the *Average Daily Wind Speed* by month:

Figure 5.4

Boxplots of the average daily wind speed for each month show seasonal patterns in both the centers and spreads.
Here we see that wind speeds tend to decrease in the summer. The months in which the winds are both strongest and most variable are November through March. And there was one remarkably windy day in November.

When we looked at a boxplot of wind speeds for the entire year, there were only 5 outliers. Now, when we group the days by Month, the boxplots display more days as outliers and call out one in November as a far outlier. The boxplots show different outliers than before because some days that seemed ordinary when placed against the entire year’s data looked like outliers for the month that they’re in. That windy day in July certainly wouldn’t stand out in November or December, but for July, it was remarkable.

FOR EXAMPLE

Roller coasters\(^4\) are a thrill ride in many amusement parks worldwide. And thrill seekers want a coaster that goes fast. There are two main types of roller coasters: those with wooden tracks and those with steel tracks. Do they typically run at different speeds? Here are boxplots:

Question: Compare the speeds of wood and steel roller coasters.

Overall, wooden-track roller coasters are slower than steel-track coasters. In fact, the fastest half of the steel coasters are faster than three quarters of the wooden coasters. Although the IQRs of the two groups are similar, the range of speeds among steel coasters is larger than the range for wooden coasters. The distribution of speeds of wooden coasters appears to be roughly symmetric, but the speeds of the steel coasters are skewed to the right, and there is a high outlier at 120 mph. We should look into why that steel coaster is so fast.

Of course, we can compare groups even when they are not in any particular order. Most scientific studies compare two or more groups. It is almost always a good idea to start an analysis of data from such studies by comparing boxplots for the groups. Here’s an example:

For her class project, a student compared the efficiency of various coffee containers. For her study, she decided to try 4 different containers and to test each of them 8 different times. Each time, she heated water to 180°F, poured it into a container, and sealed it. (We’ll learn the details of how to set up experiments in Chapter 13.) After 30 minutes, she measured the temperature again and recorded the difference in temperature. Because these are temperature differences, smaller differences mean that the liquid stayed hot—just what we would want in a coffee mug.

Question: What can we say about the effectiveness of these four mugs?

\(^4\) See the Roller Coaster Data Base at www.rcdb.com.
I want to compare the effectiveness of the different mugs in maintaining temperature. I have 8 measurements of Temperature Change for each of the mugs.

Quantitative Data Condition: The Temperature Changes are quantitative, with units of °F. Boxplots are appropriate displays for comparing the groups. Numerical summaries of each group are appropriate as well.

Plan
State what you want to find out.

Variables
Identify the variables and report the W’s.

Be sure to check the appropriate condition.

Mechanics
Report the 5-number summaries of the four groups. Including the IQR is a good idea as well.

Make a picture. Because we want to compare the distributions for four groups, boxplots are an appropriate choice.

Conclusion
Interpret what the boxplots and summaries say about the ability of these mugs to retain heat. Compare the shapes, centers, and spreads, and note any outliers.

The individual distributions of temperature changes are all slightly skewed to the high end. The Nissan cup does the best job of keeping liquids hot, with a median loss of only 2°F, and the SIGG cup does the worst, typically losing 14°F. The difference is large enough to be important: A coffee drinker would be likely to notice a 14°F drop in temperature. And the mugs are clearly different: 75% of the Nissan tests showed less heat loss than any of the other mugs in the study. The IQR of results for the Nissan cup is also the smallest of these test cups, indicating that it is a consistent performer.

<table>
<thead>
<tr>
<th>Container</th>
<th>Min</th>
<th>Q1</th>
<th>Median</th>
<th>Q3</th>
<th>Max</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUPPS</td>
<td>6°F</td>
<td>6</td>
<td>8.25</td>
<td>14.25</td>
<td>18.50</td>
<td>8.25</td>
</tr>
<tr>
<td>Nissan</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4.50</td>
<td>7</td>
<td>3.50</td>
</tr>
<tr>
<td>SIGG</td>
<td>9</td>
<td>11.50</td>
<td>14.25</td>
<td>21.75</td>
<td>24.50</td>
<td>10.25</td>
</tr>
<tr>
<td>Starbucks</td>
<td>6</td>
<td>6.50</td>
<td>8.50</td>
<td>14.25</td>
<td>17.50</td>
<td>7.75</td>
</tr>
</tbody>
</table>

The individual distributions of temperature changes are all slightly skewed to the high end. The Nissan cup does the best job of keeping liquids hot, with a median loss of only 2°F, and the SIGG cup does the worst, typically losing 14°F. The difference is large enough to be important: A coffee drinker would be likely to notice a 14°F drop in temperature. And the mugs are clearly different: 75% of the Nissan tests showed less heat loss than any of the other mugs in the study. The IQR of results for the Nissan cup is also the smallest of these test cups, indicating that it is a consistent performer.
JUST CHECKING

The Bureau of Transportation Statistics of the U.S. Department of Transportation collects and publishes statistics on airline travel (www.transtats.bts.gov). Here are three displays of the % of flights arriving late each month from 1995 through 2005:

1. Describe what the histogram says about late arrivals.
2. What does the boxplot of late arrivals suggest that you can’t see in the histogram?
3. Describe the patterns shown in the boxplots by month. At what time of year are flights least likely to be late? Can you suggest reasons for this pattern?

Comparing groups with boxplots

In the last chapter we looked at the performances of fourth-grade students on an agility test. Now let’s make comparative boxplots for the boys’ scores and the girls’ scores:

Boys: 22, 17, 18, 29, 22, 22, 23, 24, 23, 17, 21
Girls: 25, 20, 12, 19, 28, 24, 22, 21, 25, 26, 25, 16, 27, 22

Enter these data in L1 (Boys) and L2 (Girls).

Set up STATPLOT’s Plot1 to make a boxplot of the boys’ data:
• Turn the plotOn;
• Choose the first boxplot icon (you want your plot to indicate outliers);
• Specify Xlist:L1 and Freq:1, and select the Mark you want the calculator to use for displaying any outliers.

Use ZoomStat to display the boxplot for Boys. You can now TRACE to see the statistics in the five-number summary. Try it!

As you did for the boys, set up Plot2 to display the girls’ data. This time when you use ZoomStat with both plots turned on, the display shows the parallel boxplots. See the outlier?

This is a great opportunity to practice your “Tell” skills. How do these fourth graders compare in terms of agility?
When we looked at boxplots for the *Average Wind Speed* by *Month*, we noticed that several days stood out as possible outliers and that one very windy day in November seemed truly remarkable. What should we do with such outliers?

Cases that stand out from the rest of the data almost always deserve our attention. An outlier is a value that doesn’t fit with the rest of the data, but exactly how different it should be to be treated specially is a judgment call. Boxplots provide a rule of thumb to highlight these unusual points, but that rule doesn’t tell you what to do with them.

So, what *should* we do with outliers? The first thing to do is to try to understand them in the context of the data. A good place to start is with a histogram. Histograms show us more detail about a distribution than a boxplot can, so they give us a better idea of how the outlier fits (or doesn’t fit) in with the rest of the data.

A histogram of the *Average Wind Speed* in November shows a slightly skewed main body of data and that very windy day clearly set apart from the other days. When considering whether a case is an outlier, we often look at the gap between that case and the rest of the data. A large gap suggests that the case really is quite different. But a case that just happens to be the largest or smallest value at the end of a possibly stretched-out tail may be best thought of as just . . . the largest or smallest value. After all, *some* case has to be the largest or smallest.

Some outliers are simply unbelievable. If a class survey includes a student who claims to be 170 inches tall (about 14 feet, or 4.3 meters), you can be pretty sure that’s an error.

Once you’ve identified likely outliers, you should always investigate them. Some outliers are just errors. A decimal point may have been misplaced, digits transposed, or digits repeated or omitted. The units may be wrong. (Was that outlying height reported in centimeters rather than in inches [170 cm = 65 in.]? Or a number may just have been transcribed incorrectly, perhaps copying an adjacent value on the original data sheet. If you can identify the correct value, then you should certainly fix it. One important reason to look into outliers is to correct errors in your data.

Many outliers are not wrong; they’re just different. Such cases often repay the effort to understand them. You can learn more from the extraordinary cases than from summaries of the overall data set.

What about that windy November day? Was it really that windy, or could there have been a problem with the anemometers? A quick Internet search for weather on November 21, 1989, finds that there was a severe storm:

WIND, SNOW, COLD GIVE N.E. A TASTE OF WINTER

Published on November 22, 1989

Author: Andrew Dubits, Globe Staff

An intense storm roared like the Montreal Express through New England yesterday, bringing frigid winds of up to 55 m.p.h., 2 feet of snow in some parts of Vermont and a preview of winter after weeks of mild weather. Residents throughout the region awoke yesterday to an icy vortex that lifted an airplane off the runway in Newark and made driving dangerous in New England because of rapidly shifting winds that seemed to come from all directions.
When we have outliers, we need to decide what to **tell** about the data. If we can correct an error, we’ll just summarize the corrected data (and note the correction). But if we see no way to correct an outlying value, or if we confirm that it is correct, our best path is to report summaries and analyses with and **without** the outlier. In this way a reader can judge for him- or herself what influence the outlier has and decide what to think about the data.

There are two things we should **never** do with outliers. The first is to silently leave an outlier in place and proceed as if nothing were unusual. Analyses of data with outliers are very likely to be influenced by those outliers—sometimes to a large and misleading degree. The other is to drop an outlier from the analysis without comment just because it’s unusual. If you want to exclude an outlier, you must discuss your decision and, to the extent you can, justify your decision.

Case Study: Are passengers or drivers safer in a crash? Practice the skills of this chapter by comparing these two groups.

FOR EXAMPLE

Recap: We’ve looked at the speeds of roller coasters and found a difference between steel- and wooden-track coasters. We also noticed an extraordinary value.

Question: The fastest coaster in this collection turns out to be the “Top Thrill Dragster” at Cedar Point amusement park. What might make this roller coaster unusual? You’ll have to do some research, but that’s often what happens with outliers.

The Top Thrill Dragster is easy to find in an Internet search. We learn that it is a “hydraulic launch” coaster. That is, it doesn’t get its remarkable speed just from gravity, but rather from a kick-start by a hydraulic piston. That could make it different from the other roller coasters.

(You might also discover that it is no longer the fastest roller coaster in the world.)

Timeplots: Order, Please!

The Hopkins Forest wind speeds are reported as daily averages. Previously, we grouped the days into months or seasons, but we could look at the wind speed values day by day. Whenever we have data measured over time, it is a good idea to look for patterns by plotting the data in time order. Here are the daily average wind speeds plotted over time:

![Figure 5.6](image-url)
A display of values against time is sometimes called a _timeplot_. This timeplot reflects the pattern that we saw when we plotted the wind speeds by month. But without the arbitrary divisions between months, we can see a calm period during the summer, starting around day 200 (the middle of July), when the wind is relatively mild and doesn’t vary greatly from day to day. We can also see that the wind becomes both more variable and stronger during the early and late parts of the year.

Looking into the Future

It is always tempting to try to extend what we see in a timeplot into the future. Sometimes that makes sense. Most likely, the Hopkins Forest climate follows regular seasonal patterns. It’s probably safe to predict a less windy June next year and a windier November. But we certainly wouldn’t predict another storm on November 21.

Other patterns are riskier to extend into the future. If a stock has been rising, will it continue to go up? No stock has ever increased in value indefinitely, and no stock analyst has consistently been able to forecast when a stock’s value will turn around. Stock prices, unemployment rates, and other economic, social, or psychological concepts are much harder to predict than physical quantities. The path a ball will follow when thrown from a certain height at a given speed and direction is well understood. The path interest rates will take is much less clear. Unless we have strong (nonstatistical) reasons for doing otherwise, we should resist the temptation to think that any trend we see will continue, even into the near future.

Statistical models often tempt those who use them to think beyond the data. We’ll pay close attention later in this book to understanding when, how, and how much we can justify doing that.

Re-expressing Data: A First Look

Re-expressing to Improve Symmetry

When the data are skewed, it can be hard to summarize them simply with a center and spread, and hard to decide whether the most extreme values are outliers or just part of the stretched-out tail. How can we say anything useful about such data? The secret is to _re-express_ the data by applying a simple function to each value.

Many relationships and “laws” in the sciences and social sciences include functions such as logarithms, square roots, and reciprocals. Similar relationships often show up in data. Here’s a simple example:

In 1980 large companies’ chief executive officers (CEOs) made, on average, about 42 times what workers earned. In the next two decades, CEO compensation soared when compared to the average worker. By 2000 that multiple had jumped\(^5\)

to 525. What does the distribution of the compensation of Fortune 500 companies’ CEOs look like? Here’s a histogram and boxplot for 2005 compensation:

![Figure 5.7](image.png)

FIGURE 5.7
Compensation paid to CEOs of the Fortune 500 companies in 2005. The distribution seems to have outliers. But maybe it just has a long tail on the right.

We have 500 CEOs and about 48 possible histogram bins, most of which are empty—but don’t miss the tiny bars stragglng out to the right. The boxplot indicates that some CEOs received extraordinarily high compensations, while the majority received relatively “little.” But look at the values of the bins. The first bin, with about half the CEOs, covers incomes from $0 to $5,000,000. Imagine receiving a salary survey with these categories:

What is your income?
a) $0 to $5,000,000
b) $5,000,001 to $10,000,000
c) $10,000,001 to $15,000,000
d) More than $15,000,000

The reason that the histogram seems to leave so much of the area blank is that the salaries are spread all along the axis from about $15,000,000 to $240,000,000. After $50,000,000 there are so few for each bin that it’s very hard to see the tiny bars. What we can see from this histogram and boxplot is that this distribution is highly skewed to the right.

It can be hard to decide what we mean by the “center” of a skewed distribution, so it’s hard to pick a typical value to summarize the distribution. What would you say was a typical CEO total compensation? The mean value is $10,307,000, while the median is “only” $4,700,000. Each tells us something different about the data.

One approach is to re-express, or transform, the data by applying a simple function to make the skewed distribution more symmetric. For example, we could take the square root or logarithm of each compensation value. Taking logs works pretty well for the CEO compensations, as you can see:

![Figure 5.8](image.png)

FIGURE 5.8
The logarithms of 2005 CEO compensations are much more nearly symmetric.
Re-expressing to Equalize Spread Across Groups

Researchers measured the concentration (nanograms per milliliter) of cotinine in the blood of three groups of people: nonsmokers who have not been exposed to smoke, nonsmokers who have been exposed to smoke (ETS), and smokers. Cotinine is left in the blood when the body metabolizes nicotine, so this measure gives a direct measurement of the effect of passive smoke exposure. The boxplots of the cotinine levels of the three groups tell us that the smokers have higher cotinine levels, but if we want to compare the levels of the passive smokers to those of the nonsmokers, we’re in trouble, because on this scale, the cotinine levels for both nonsmoking groups are too low to be seen.

Re-expressing can help alleviate the problem of comparing groups that have very different spreads. For measurements like the cotinine data, whose values can’t be negative and whose distributions are skewed to the high end, a good first guess at a re-expression is the logarithm.

After taking logs, we can compare the groups and see that the nonsmokers exposed to environmental smoke (the ETS group) do show increased levels of (log) cotinine, although not the high levels found in the blood of smokers.

Notice that the same re-expression has also improved the symmetry of the cotinine distribution for smokers and pulled in most of the apparent outliers in all of the groups. It is not unusual for a re-expression that improves one aspect of data to improve others as well. We’ll talk about other ways to re-express data as the need arises throughout the book. We’ll explore some common re-expressions more thoroughly in Chapter 10.
WHAT CAN GO WRONG?

- **Avoid inconsistent scales.** Parts of displays should be mutually consistent—no fair changing scales in the middle or plotting two variables on different scales but on the same display. When comparing two groups, be sure to compare them on the same scale.

- **Label clearly.** Variables should be identified clearly and axes labeled so a reader knows what the plot displays.

Here’s a remarkable example of a plot gone wrong. It illustrated a news story about rising college costs. It uses time-plots, but it gives a misleading impression. First think about the story you’re being told by this display. Then try to figure out what has gone wrong.

What’s wrong? Just about everything.

- The horizontal scales are inconsistent. Both lines show trends over time, but exactly for what years? The tuition sequence starts in 1965, but rankings are graphed from 1989. Plotting them on the same (invisible) scale makes it seem that they’re for the same years.

- The vertical axis isn’t labeled. That hides the fact that it’s inconsistent. Does it graph dollars (of tuition) or ranking (of Cornell University)?

This display violates three of the rules. And it’s even worse than that: It violates a rule that we didn’t even bother to mention.

- The two inconsistent scales for the vertical axis don’t point in the same direction! The line for Cornell’s rank shows that it has “plummeted” from 15th place to 6th place in academic rank. Most of us think that’s an improvement, but that’s not the message of this graph.

- **Beware of outliers.** If the data have outliers and you can correct them, you should do so. If they are clearly wrong or impossible, you should remove them and report on them. Otherwise, consider summarizing the data both with and without the outliers.

CONNECTIONS

We discussed the value of summarizing a distribution with shape, center, and spread in Chapter 4, and we developed several ways to measure these attributes. Now we’ve seen the value of comparing distributions for different groups and of looking at patterns in a quantitative variable measured over time. Although it can be interesting to summarize a single variable for a single group, it is almost always more interesting to compare groups and look for patterns across several groups and over time. We’ll continue to make comparisons like these throughout the rest of our work.
WHAT HAVE WE LEARNED?

- We’ve learned the value of comparing groups and looking for patterns among groups and over time.
- We’ve seen that boxplots are very effective for comparing groups graphically. When we compare groups, we discuss their shape, center, and spreads, and any unusual features.
- We've experienced the value of identifying and investigating outliers. And we've seen that when we group data in different ways, it can allow different cases to emerge as possible outliers.
- We've graphed data that have been measured over time against a time axis and looked for long-term trends.

Terms

Boxplot
81. A boxplot displays the 5-number summary as a central box with whiskers that extend to the non-outlying data values. Boxplots are particularly effective for comparing groups and for displaying outliers.

Outlier
81, 87. Any point more than 1.5 IQR from either end of the box in a boxplot is nominated as an outlier.

Far Outlier
81. If a point is more than 3.0 IQR from either end of the box in a boxplot, it is nominated as a far outlier.

Comparing distributions
82. When comparing the distributions of several groups using histograms or stem-and-leaf displays, consider their:
- Shape
- Center
- Spread

Comparing boxplots
83. When comparing groups with boxplots:
- Compare the shapes. Do the boxes look symmetric or skewed? Are there differences between groups?
- Compare the medians. Which group has the higher center? Is there any pattern to the medians?
- Compare the IQRs. Which group is more spread out? Is there any pattern to how the IQRs change?
- Using the IQRs as a background measure of variation, do the medians seem to be different, or do they just vary much as you'd expect from the overall variation?
- Check for possible outliers. Identify them if you can and discuss why they might be unusual. Of course, correct them if you find that they are errors.

Timeplot
88. A timeplot displays data that change over time. Often, successive values are connected with lines to show trends more clearly. Sometimes a smooth curve is added to the plot to help show long-term patterns and trends.

Skills

- Be able to select a suitable display for comparing groups. Understand that histograms show distributions well, but are difficult to use when comparing more than two or three groups. Boxplots are more effective for comparing several groups, in part because they show much less information about the distribution of each group.
- Understand that how you group data can affect what kinds of patterns and relationships you are likely to see. Know how to select groupings to show the information that is important for your analysis.
- Be aware of the effects of skewness and outliers on measures of center and spread. Know how to select appropriate measures for comparing groups based on their displayed distributions.
- Understand that outliers can emerge at different groupings of data and that, whatever their source, they deserve special attention.
- Recognize when it is appropriate to make a timeplot.
Know how to make side-by-side histograms on comparable scales to compare the distributions of two groups.

Know how to make side-by-side boxplots to compare the distributions of two or more groups.

Know how to describe differences among groups in terms of patterns and changes in their center, spread, shape, and unusual values.

Know how to make a timeplot of data that have been measured over time.

Know how to compare the distributions of two or more groups by comparing their shapes, centers, and spreads. Be prepared to explain your choice of measures of center and spread for comparing the groups.

Be able to describe trends and patterns in the centers and spreads of groups—especially if there is a natural order to the groups, such as a time order.

Be prepared to discuss patterns in a timeplot in terms of both the general trend of the data and the changes in how spread out the pattern is.

Be cautious about assuming that trends over time will continue into the future.

Be able to describe the distribution of a quantitative variable in terms of its shape, center, and spread.

Be able to describe any anomalies or extraordinary features revealed by the display of a variable.

Know how to compare the distributions of two or more groups by comparing their shapes, centers, and spreads.

Know how to describe patterns over time shown in a timeplot.

Be able to discuss any outliers in the data, noting how they deviate from the overall pattern of the data.

COMPARING DISTRIBUTIONS ON THE COMPUTER

Most programs for displaying and analyzing data can display plots to compare the distributions of different groups. Typically these are boxplots displayed side-by-side.

Side-by-side boxplots should be on the same y-axis scale so they can be compared.

Some programs offer a graphical way to assess how much the medians differ by drawing a band around the median or by “notching” the boxes.

Boxes are typically labeled with a group name. Often they are placed in alphabetical order by group name—not the most useful order.